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SelfSelf--Trapping ConceptTrapping Concept

2,100 tonnes of CO2 injected

December 2002-February 2003

CO2(aq)-rich brine
• Can mineralization lead to self-trapping?

• Timing of this mineralization is critical

Seven Rivers Fm.

Queen Fm.

Shattuck Sandstone



DawsoniteDawsonite

Specifically…..
• Springerville Natural CO2 Field (eastern AZ) 
(Moore et al., 2003)

• Bowen-Gunnedah-Sydney Basin (Australia)
occurs as a widespread cement within sedimentary
rocks (Baker et al., 1995)

• Ordovician limestone of Montreal, Quebec
occurs as sills (Vard, 1993)

• Naturally occurring throughout regions of the
world with CO2-rich waters, but has not been
reproduced within laboratory experiments



ObjectivesObjectives
• Determine specific geochemical reactions that

proceed within the reservoir
• Examine propensity for self-trapping (Dawsonite

precipitation)
Tools…..

- TRANS (Lichtner, 1999)
- Geochemist’s Workbench (Bethke, 2002)

• Examine timing of Dawsonite precipitation
- What is controlling this time scale?
- How are other reactions enhancing or 

prohibiting Dawsonite precipitation?



ObjectivesObjectives
Geochemical Rxns. at high COGeochemical Rxns. at high CO22(aq) concentrations(aq) concentrations

3
3 8 2 24 2 3 ( )NaAlSi O H H O Na Al SiO aq+ + ++ ↔ + + +

Dissolution processes

Albite dissolution

K-Feldspar dissolution

Anhydrite and Dolomite dissolution

Major Mineralization processes

**Dawsonite precipitation**

3 8 2 2 2 3 23 ( ) ( )NaAlSi O CO H O SiO aq NaAlCO OH+ + ↔ +

3
3 8 2 24 2 3 ( )KAlSi O H H O Na Al SiO aq+ + ++ ↔ + + +

pH = ~4.7 CO2(aq) = ~1 molal
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(3)



ObjectivesObjectives

Al3+ = 1e-10 molal
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ObjectivesObjectives
Parameterization of kinetic rate constants

300*1.00 × 10-16600*1.00 × 10-16300*1.00 × 10-174

**1.00 × 10-11******1.78 × 10-143

**1.00 × 10-16**1.00 × 10-16**1.00 × 10-162

8491.38 × 10-116953.63 × 10-137111.62 × 10-131

SSA
(cm2/g)

Dawsonite
(mol/cm2-s)

SSA
(cm2/g)

Albite
(mol/cm2-s)

SSA
(cm2/g)

K-Feldspar 
(mol/cm2-s)Study

Notes:  300* = Specific surface area in (cm2/cm3) per bulk volume

**   = no data available

1:  Gauss et al. (2003)

2:  Xu et al. (2002)

3:  Johnson et al. (2001)

4:  Stauffer et al. (2003)



Timing StudyTiming Study
Sensitivity Analysis to determine time 

scale for Dawsonite precipitation
• Sensitivity Analysis:  kinetic rate constants varied while 

holding specific surface areas constant
(set to Gauss et al. (2003))

Gauss et al., 2003 parameters were used as base case
- varied K-Feldspar, Albite, and Dawsonite rate constants
- examined the timing of Dawsonite precipitation

Study Timing

Gauss et al.                           <2 yr

Xu et al.                                 ~800 yr

Johnson et al.                        ~1000 yr

Stauffer et al.                         ~3000 yr
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Timing StudyTiming Study
Controls on timing of Dawsonite precipitation

• Timing of Albite dissolution (rate constants)
- Albite dissolution controls Al3+ in solution
which in turn controls Dawsonite precipitation

• Kinetic rate constants of alumino-silicate minerals
and of Dawsonite control the precipitation timing

• Precipitation timing varies over several orders of
magnitude due to kinetic rate constant disparities



ConclusionsConclusions

• Dawsonite precipitation at high CO2(aq) 
concentrations is predicted in an arkosic
sandstone reservoir

• Timing of Dawsonite precipitation varies over
several orders of magnitude mainly dependent
upon the kinetic rate constants of feldspathic
minerals and Dawsonite



West Pearl Queen Implications
• Self-trapping may occur if separate phase CO2

remains in the vicinity of feldspar-rich mineral
zones (in the case of the West Pearl Queen
reservoir, Albite)

• Dawsonite may greatly influence reservoir
hydrodynamics due to porosity and permeability
changes

• Sites with feldspar rich cap rocks provide the best
opportunity for Dawsonite self-trapping

- Overlying mineralogy within the West Pearl 
Queen reservoir is dominated by evaporitic  
minerals
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